Blunt Thoracic Trauma: Rib fractures, flail chest, and pulmonary contusion

Chaitan K. Narsule
December 27, 2010
Outline

- Introduction
- Mechanisms of injury
- Rib fractures
- Flail chest
- Pulmonary contusion
- Conclusion
Introduction
About Blunt Thoracic Trauma...

- Causes a variety of injuries
 - Simple abrasions and contusions
 - Life-threatening insults to thoracic viscera

- Associated with high morbidity

- 20% of all trauma deaths involve chest injury
 - Second only to head and spinal cord injuries
About Blunt Thoracic Trauma...

- Most thoracic injuries don’t require major intervention
 - Tube thoracostomy
 - Mechanical ventilation
 - Analgesia for pain control
 - Supportive care

Picture courtesy of
About Blunt Thoracic Trauma...

- Elderly and pts with diminished pulmonary reserve
 - Most vulnerable for respiratory deterioration
 - Higher mortality
 - Require critical care observation
Mechanisms of injury
Motor vehicle crashes are the overwhelming etiology

- 44% of 98,000 unintentional injuries in the US in 2001 were caused by MVCs
- Disabling injuries from MVCs occur every 14 seconds
- Estimated 7% risk of serious thoracic injury with any MVC
- In US, ~1,500 pts present with a life-threatening thoracic injury each day from MVCs alone.
Less Common Causes of Injury

- Falls from height
- Occupational or recreational-related crush injuries
- Assaults
Three types of blunt force leading to thoracic injury

- Compression
- Shearing
- Blast
Compression

- Rib fxs occur when applied force to chest exceeds strength of thoracic cage

- Area of rib weakness is at 60° rotation from the sternum

- Ribs subjected to lateral or AP compression will fracture at 60° and posteriorly
Compression

- AP compression can create costochondral disruption ➔ sternal flail
Shearing

- Due to rapid acceleration and deceleration
- Causes soft tissue and vascular injury
- Soft tissue and vascular organ movement is restricted to anatomic and developmental attachments
- If tensile strength of attached tissue is exceeded, tearing or rupture will occur.
Shearing

- **EX: Aortic transection**
 - Aorta is tethered by ligamentum arteriosum and the vertebrae below
 - Junction of the more mobile arch and the stationary descending aorta is most common site for disruption.
Shearing

- **Lung:**
 - Laceration
 - Hematoma
 - Contusion
 - Pneumatocele
Blast injury

- **Deadly**
 - Due to pressure wave of the blast
 - Victim can be launched considerable distances
 - Surrounding debris become missiles
Blast injury

- Explosions in closed space are more severe
 - Pressure waves are reflected back to the patient, intensifying injury from original blast.

- Typical pulmonary injury: contusion with edema and alveolar hemorrhage.
Rib fractures
Rib fractures

- Difficult to determine prevalence among seriously injured patients
- AP CXR is not very sensitive for detection
- National trauma registries track top THREE diagnoses per pt
 - Rib fxs may not be included for multiply-injured pts.
Rib fractures

- Marker for serious intrathoracic and abdominal injury
- Source of significant pain
- Predictor of pulmonary deterioration, especially in elderly
Rib fractures

- 84-94% of pts with rib fxs have significant associated injuries
 - Pneumothorax
 - Hemothorax
 - Pulmonary contusion
 - Liver laceration or contusion
 - 8th rib or below ➔ 19-56% probability of injury
 - Splenic laceration or contusion
 - 8th rib or below ➔ 22-28% probability of injury
Rib fractures

- **Diagnosis**
 - **CXR**
 - Movement toward CT imaging in many centers to evaluate for associated injuries
 - 65% of pts that sustained significant blunt chest trauma who have admission chest CT have other injuries missed by CXR
Rib fractures

- Omnious in CHILDREN
 - Children’s bones lack calcification
 - Rib cages are more compliant than that of adults
 - Fxs in children indicate HIGHER absorption of energy than in adults
Rib fractures

- Omnious in CHILDREN
 - Though absence of rib fxs makes significant intrathoracic injuries less likely, this is not zero.
 - 2% of 986 pediatric pts had significant injury following blunt chest trauma, without evidence of rib fractures.
 - 38% of children with pulmonary contusion injury DO NOT have evidence of rib fxs
Rib fractures

- Ominous in ELDERLY
 - Rib fractures from minimal trauma (ex. ground level falls) make up 12% of all skeletal fractures in elderly

- Osteoporosis, loss of muscle mass, and comorbidities
 - Decrease force required to cause rib fxs
 - Decrease physiologic reserve available to tolerate injury
Rib fractures

- Ominous in ELDERLY

- Pts with rib fxs older than 65 have TWICE the mortality and thoracic morbidity of pts ≤ 64.

- Risk of pneumonia increases by 27%

- Mortality increases by 19% for each addt’l rib fx.
Pain management

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral or IV NSAIDS or narcotics</th>
<th>Intercostal nerve blocks</th>
<th>Thoracic epidurals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Can discharge with oral medications</td>
<td>Effective</td>
<td>Controls pain without sedation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Found to be indep predictor of decreased mortality and incidence of pulm complications.)</td>
</tr>
<tr>
<td>Cons</td>
<td>Not immediately effective in acute phase of injury. Narcotics cause respiratory depression.</td>
<td>Require reinjection</td>
<td>Requires thoracic spine clearance, and holding of anticoagulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral or IV NSAIDS or narcotics</th>
<th>Intercostal nerve blocks</th>
<th>Thoracic epidurals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Can discharge with oral medications</td>
<td>Effective</td>
<td>Controls pain without sedation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Found to be indep predictor of decreased mortality and incidence of pulm complications.)</td>
</tr>
<tr>
<td>Cons</td>
<td>Not immediately effective in acute phase of injury. Narcotics cause respiratory depression.</td>
<td>Require reinjection</td>
<td>Requires thoracic spine clearance, and holding of anticoagulation</td>
</tr>
</tbody>
</table>
Flail Chest
Flail chest

- Rare; prevalence among pts with blunt chest wall injury is ~5-13%

- Most serious of the blunt chest wall injuries

- Paradoxical motion of flail segment in spontaneously breathing patient
Fig. 2. Two types of flail chest: sternal and lateral. (From Mayberry JC, Trunkey DD. The fractured rib in chest wall trauma. Chest Surg Clin N Am 1997;7:239–61; with permission.)
Fig. 3. Flail chest physiology. (From Mayberry JC, Trunkey DD. The fractured rib in chest wall trauma. Chest Surg Clin N Am 1997;7:239–61; with permission.)
On inspiration, flail segment is pulled in by negative intrathoracic pressure.

On exhalation, positive pressure forces segment to protrude outward.
Diagnosis

- Muscular splinting of chest may mask the paradoxical motion until flail becomes apparent upon development of fatigue.

- In mechanically vented pts, high degree of suspicion, a good physical examination looking for crepitance and fractures, and review of imaging are key to diagnosis.
Flail chest

- Clinically significant impairment of respiratory function occurs with fractures of at least FOUR consecutive ribs.

- Pt’s comorbidities and age influence the clinical effect.
Flail chest

With age >55, likelihood of death increases:
- 132% for every 10-year increase in age
- 30% for each unit increase in ISS.

In non-intubated patients, there is a dramatic decrease in tidal volume and effective coughing
- sputum retention, atelectasis, and pneumonia
Flail chest

- Pulmonary contusion also contributes to development of bronchial obstruction and intrapulmonary shunting.
Treatment

- Low threshold for intubation
 - Especially in patients with medical comorbidities and the elderly

- Early intubation in pts age ≥ 30 w/moderate-to-severe had 6% mortality
 - If intubation was withheld for 24 hrs until they developed evidence of hypoxia or hypercapnia → mortality > 50%
Treatment

- 68% of pts with flail chest and resp failure are extubated by the third post-injury day

- Yet, with more severe resp failure, patients will require prolonged vent support and possibly tracheostomy.
Treatment

- Pulmonary toilet:
 - Assess efficacy by incentive spirometer or Acapella device
 - Assess effectiveness of cough
 - Chest physiotherapy
 - Therapeutic bronchoscopy
Treatment

- Vent modes
 - Modes with unassisted breaths (i.e. IMV) increase paradoxical chest wall movement → work of breathing

 - Supported breaths and CPAP are preferred
Treatment

- Criteria for operative stabilization
 - Pain control
 - Restoration of hemithorax volume loss
 - Failure to wean from mechanical ventilation
Judet staple
Treatment Considerations

- Intercostal nerve entrapment
- Weak, osteoporotic ribs
- Tension on fixation (as ribs not only move up and down, but in and out)
Treatment

- Nonrandomized study of pts with flail chest who were and were not treated with operative stabilization:
 - # of days (mean) on ventilator
 - 26.7 for non-operative group
 - 6.5 for operative group
 - Shorter ICU stay, lower pneumonia rate, and lower mortality

Treatment

- Kirchner wires and vent vs. vent alone
 - # days on vent (K-wire): 1.3 days
 - # days on vent (vent alone): 15 days
 - Shorter ICU stay, lower pneumonia rate, and lower mortality in K-wire group

Pulmonary contusion
Pulmonary contusion

- Should be anticipated in pts who sustain significant high-energy blunt chest impact

- **Mechanism** of inciting event and physical findings of **fractures or flail segment** increase probability of having pulmonary contusion.
Diagnosis

- Focal or diffuse opacification on chest x-ray

- Opacification is irregular, does not conform to segments or lobes within lung (unlike aspiration pneumonitis)

- Not always immediately apparent radiographically.

- 1/3rd of pts don’t have any evidence on initial CXR
Diagnosis

- Mean time for CXR opacification is 6 hours

- May take up to 48 hours for pulmonary contusion to become evident on CXR

- CT chest is more sensitive for diagnosis, but no changes in management or outcome are associated with their use in pulmonary contusion alone
Treatment

- Pts with pulm contusion > 28% of total volume required intubation.
 - No patients with < 18% contusion required intubation.

- Supportive therapy
 - supplemental oxygen for hypoxia
 - pulmonary toilet: coughing, deep breathing and suctioning
Treatment

- Address associated injuries (i.e. thoracostomy tubes for hemopneumothorax)

- Prophylactic intubation without signs of impending respiratory failure is not indicated.
Fluid management

- Traditional thinking suggests that overzealous use of crystalloids causes exacerbation of hypoxia
 - Not substantiated by data

- Standard resuscitation for euvolemia ideal especially in setting of other traumatic injuries
Treatment

- Steroids show no benefit and may impair bacterial clearance

- Empiric use of antibiotics is not warranted
 - May foster development of resistant organisms
 - Should be reserved for treatment of specific organisms in setting of superimposed pneumonia
Conclusions

- Most cases of blunt thoracic trauma don’t require major intervention

- Rib fractures are ominous in children and the elderly

- Pulmonary toilet and analgesia are the mainstay for treatment
Conclusions

- Operative fixation should be considered for flail chest segments to restore thoracic volume or for patients with persistent respiratory failure.

- Patients with pulmonary contusion need supportive care, with intubation for cases in respiratory failure.

- Prophylactic intubation is not necessary for pulmonary contusion in the absence of respiratory failure.
Conclusions

- Antibiotics and steroids are not necessary and make no difference in the management of pulmonary contusion.

- Fluid management should include adequate resuscitation for the multi-injured trauma patient.
Blunt Thoracic Trauma:
Rib fractures, flail chest, and pulmonary contusion

Chaitan K. Narsule
December 27, 2010